
Eager Cat TOKEN
May 10, 2024

Audit Status: Pass

RISK ANALYSIS Eager Cat.

 Classifications of Manual Risk Results

 Classification Description

 Critical Danger or Potential Problems.

 High Be Careful or Fail test.

 Medium Improve is needed.

 Low Pass, Not-Detected or Safe Item.

 Informational Function Detected

 Manual Code Review Risk Results

 Contract Security Description

 Buy Tax 3%

 Sale Tax 3%

 Cannot Buy Pass

 Cannot Sale Pass

 Max Tax 3%

 Modify Tax Yes

 Fee Check Pass

 Is Honeypot? Not Detected

 Trading Cooldown Not Detected

 Enable Trade? True

 Pause Transfer? Not Detected

Page 1 of 20CFG.NINJA

https://CFG.NINJA/

 Contract Security Description

 Max Tx? Pass

 Is Anti Whale? NotDetected

 Is Anti Bot? Not-Detected

 Is Blacklist? Not Detected

 Blacklist Check Pass

 is Whitelist? Not-Detected

 Can Mint? Pass

 Is Proxy? Not Detected

 Can Take Ownership? Not Detected

 Hidden Owner? Detected

 Owner

 Self Destruct? Not Detected

 External Call? Detected

 Other? Not Detected

 Holders 14

 Audit Confidence Medium

 Authority Check Pass

 Freeze Check Pass

The summary section reveals the strengths and weaknesses identified during the assessment, including any vulnerabilities or
potential risks that may exist. It serves as a valuable snapshot of the overall security status of the audited project. However, it is
highly recommended to read the entire security assessment report for a comprehensive understanding of the findings. The full
report provides detailed insights into the assessment process, methodology, and specific recommendations for addressing the
identified issues.

Page 2 of 20CFG.NINJA

https://CFG.NINJA/

CFG Ninja Verified on May 10, 2024

Eager Cat

Executive Summary

TYPES ECOSYSTEM LANGUAGE

DeFi BNBCHAIN Solidity

Timeline

Audit Request Onboarding Process Audit Preview Audit Release
2024-05-10 2024-05-10 2024-05-10 2024-05-10

Vulnerability Summary

2 0 2 2
Total Findings Resolved Pending Unresolved

1 Critical
0 Resolved, 1 Pending Critical risks are the most severe and can have a significant impact on the smart

contracts functionality, security, or the entire system. These vulnerabilities can lead
to the loss of user funds, unauthorized access, or complete system compromise.

0 High
High-risk vulnerabilities have the potential to cause significant harm to the smart
contract or the system. While not as severe as critical risks, they can still result in
financial losses, data breaches, or denial of service attacks.

1 Medium
0 Resolved, 1 Pending Medium-risk vulnerabilities pose a moderate level of risk to the smart contracts

security and functionality. They may not have an immediate and severe impact but
can still lead to potential issues if exploited. These risks should be addressed to
ensure the contracts overall security.

0 Low
Low-risk vulnerabilities have a minimal impact on the smart contracts security and
functionality. They may not pose a significant threat, but it is still advisable to address
them to maintain a robust security posture.

0 Informational
Informational risks are not actual vulnerabilities but provide useful information about
potential improvements or best practices. These findings may include suggestions
for code optimizations, documentation enhancements, or other non-critical areas for
improvement.

Page 3 of 20CFG.NINJA

https://CFG.NINJA/

PROJECT OVERVIEW Eager Cat.

 Token Summary

 Parameter Result

 Address 0xd3975dc2DD5252f2e07C154ca0be5e3e92057fE9

 Name Eager Cat

 Token Tracker Eager Cat (KAT)

 Decimals 9

 Supply 1,000,000,000,000,000

 Platform BNBCHAIN

 Compiler v0.8.4+commit.c7e474f2

 Contract Name BuybackBabyToken

 Optimization Yes with 200 runs

 LicenseType MIT

 Language Solidity

 Codebase https://bscscan.com/
address/0xd3975dc2DD5252f2e07C154ca0be5e3e92057fE9#code

Page 4 of 20CFG.NINJA

https://CFG.NINJA/

 Main Contract Assessed

 Name Contract Live

 Eager Cat 0xd3975dc2DD5252f2e07C154ca0be5e3e92057fE9 Yes

 TestNet Contract Was Not Assessed

 Solidity Code Provided

 SolID File Sha-1 FileName

 KAT 3336ecad5721b307a0d8f3b7f27d4873387058b9 KAT.sol

Page 5 of 20CFG.NINJA

https://CFG.NINJA/

 Call Graph

The Smart Contract Graph is a visual representation of the interconnectedness and relationships between
smart contracts within a blockchain network. It provides a comprehensive view of the interactions and
dependencies between different smart contracts, allowing developers and users to analyze and understand
the flow of data and transactions within the network. The Smart Contract Graph enables better
transparency, security, and efficiency in decentralized applications by facilitating the identification of
potential vulnerabilities, optimizing contract execution, and enhancing overall network performance.

Page 6 of 20CFG.NINJA

https://CFG.NINJA/

 Inheritance Check

Smart contract inheritance is a concept in blockchain programming where one smart contract can inherit
properties and functionalities from another existing smart contract. This allows for code reuse and
modularity, making the development process more efficient and scalable. Inheritance enables the child
contract to access and utilize the variables, functions, and modifiers defined in the parent contract, thereby
inheriting its behavior and characteristics. This feature is particularly useful in complex decentralized
applications (dApps) where multiple contracts need to interact and share common functionalities. By
leveraging smart contract inheritance, developers can create more organized and maintainable code
structures, promoting code reusability and reducing redundancy.

Page 7 of 20CFG.NINJA

https://CFG.NINJA/

TECHNICAL FINDINGS Eager Cat.

Smart contract security audits classify risks into several categories: Critical, High, Medium, Low, and
Informational. These classifications help assess the severity and potential impact of vulnerabilities found in
smart contracts.

 Classification of Risk

 Severity Description

Critical

Critical risks are the most severe and can have a significant impact on the smart
contracts functionality, security, or the entire system. These vulnerabilities can
lead to the loss of user funds, unauthorized access, or complete system
compromise.

High

High-risk vulnerabilities have the potential to cause significant harm to the smart
contract or the system. While not as severe as critical risks, they can still result in
financial losses, data breaches, or denial of service attacks.

Medium

Medium-risk vulnerabilities pose a moderate level of risk to the smart contracts
security and functionality. They may not have an immediate and severe impact
but can still lead to potential issues if exploited. These risks should be addressed
to ensure the contracts overall security.

Low

Low-risk vulnerabilities have a minimal impact on the smart contracts security
and functionality. They may not pose a significant threat, but it is still advisable to
address them to maintain a robust security posture.

Informational

Informational risks are not actual vulnerabilities but provide useful information
about potential improvements or best practices. These findings may include
suggestions for code optimizations, documentation enhancements, or other non-
critical areas for improvement.

By categorizing risks into these classifications, smart contract security audits can prioritize the resolution of
critical and high-risk vulnerabilities to ensure the contract's overall security and protect user funds and data.

Page 8 of 20CFG.NINJA

https://CFG.NINJA/

 KAT-03 | Lack of Input Validation.

Category Severity Location Status

Volatile
Code

 Low KAT.sol: L: 859 C: 14, L: 866
C: 14, L: 887 C: 14, L: 1918 C:
14

 Not-Detected

Description

The given input is missing the check for the non-zero address.

The given input is missing the check for the onlyOwners need to be revisited for require..

Recommendation

We advise the client to add the check for the passed-in values to prevent unexpected
errors as below:
 ...
 require(receiver != address(0), "Receiver is the zero address");
 ...
 ...
 require(value X limitation, "Your not able to do this function");
 ...

We also recommend customer to review the following function that is missing a required
validation. onlyOwners need to be revisited for require..

Mitigation

References:

Zero Address check. The danger!!!

Page 9 of 20CFG.NINJA

https://blackadam.hashnode.dev/zero-address-check-the-danger
https://CFG.NINJA/

 KAT-05 | Missing Event Emission.

Category Severity Location Status

Volatile
Code

 Low KAT.sol: L: 843 C: 14, L: 859
C: 14, L: 866 C: 14, L: 1918 C:
14

 Detected

Description

Detected missing events for critical arithmetic parameters. There are functions that have
no event emitted, so it is difficult to track off-chain changes.The linked code does not
create an event for the transfer.

Recommendation

Emit an event for critical parameter changes. It is recommended emitting events for the
sensitive functions that are controlled by centralization roles.

Mitigation

References:

Understanding Events in Smart Contracts

Page 10 of 20CFG.NINJA

https://blog.solidityscan.com/understanding-events-in-smart-contracts-26e8d50b3eef
https://CFG.NINJA/

 KAT-14 | Unnecessary Use Of SafeMath.

Category Severity Location Status

Logical
Issue

 Medium KAT.sol: L: 0 C: 0 Detected

Description

The SafeMath library is used unnecessarily. With Solidity compiler versions 0.8.0 or newer,
arithmetic operations
 will automatically revert in case of integer overflow or underflow.
 library SafeMath {
 An implementation of SafeMath library is found.
 using SafeMath for uint256;
 SafeMath library is used for uint256 type in contract.

Recommendation

We advise removing the usage of SafeMath library and using the built-in arithmetic
operations provided by the
 Solidity programming language.

Mitigation

References:

Writing Clean Code for Solidity: Best Practices for Solidity Development

Page 11 of 20CFG.NINJA

https://medium.com/@solidity101/writing-clean-code-for-solidity-best-practices-for-solidity-development-794e66ce7c8a
https://CFG.NINJA/

 KAT-19 | Centralization Privileges of KAT.

Category Severity Location Status

Coding
Style

 Medium KAT.sol: L: 393 C: 14,L: 385
C: 14,L: 341 C: 14,L: 306 C:
14,L: 299 C: 14,L: 269 C: 14

 Detected

Description

In a smart contract, the concept of "onlyOwner" functions refers to certain functions that
can only be executed by the owner or creator of the contract. These functions are
typically designed to perform critical actions or modify sensitive data within the contract.
By restricting access to these functions, the contract owner maintains control and ensures
the integrity and security of the contract.

 Function Name Parameters Visibility

authorize Public

unauthorize Public

transferOwnership address newOwner Public

setDistributionCriteria External

setShare External

deposit External

process External

setDistributionCriteria External

Recommendation

Inheriting from Ownable and calling its constructor on yours ensures that the address
deploying your contract is registered as the owner. The onlyOwner modifier makes a
function revert if not called by the address registered as the owner. It is important that
deployr or owner secure the credentials that has owner priviledge to ensure the security

Page 12 of 20CFG.NINJA

https://CFG.NINJA/

of the project.

Mitigation

References:

Guide to Ownership and Access Control in Solidity

Writing Clean Code for Solidity: Best Practices for Solidity Development

Page 13 of 20CFG.NINJA

https://medium.com/coinmonks/guide-to-ownership-and-access-control-in-solidity-f2d99f63c6d4
https://medium.com/@solidity101/writing-clean-code-for-solidity-best-practices-for-solidity-development-794e66ce7c8a
https://CFG.NINJA/

 FINDINGS

In this document, we present the findings and results of the smart contract security audit. The identified
vulnerabilities, weaknesses, and potential risks are outlined, along with recommendations for mitigating
these issues. It is crucial for the team to address these findings promptly to enhance the security and
trustworthiness of the smart contract code.

 Severity Found Pending Resolved

 Critical 0 1 0

 High 0 0 0

 Medium 2 1 0

 Low 2 0 0

 Informational 0 0 0

 Total 4 2 0

In a smart contract, a technical finding summary refers to a compilation of identified issues or vulnerabilities discovered during a
security audit. These findings can range from coding errors and logical flaws to potential security risks. It is crucial for the project owner
to thoroughly review each identified item and take necessary actions to resolve them. By carefully examining the technical finding
summary, the project owner can gain insights into the weaknesses or potential threats present in the smart contract. They should
prioritize addressing these issues promptly to mitigate any risks associated with the contract's security. Neglecting to address any
identified item in the security audit can expose the smart contract to significant risks. Unresolved vulnerabilities can be exploited by
malicious actors, potentially leading to financial losses, data breaches, or other detrimental consequences. To ensure the integrity and
security of the smart contract, the project owner should engage in a comprehensive review process. This involves understanding the
nature and severity of each identified item, consulting with experts if needed, and implementing appropriate fixes or enhancements.
Regularly updating and maintaining the smart contract's codebase is also essential to address any emerging security concerns. By
diligently reviewing and resolving all identified items in the technical finding summary, the project owner can significantly reduce the
risks associated with the smart contract and enhance its overall security posture.

Page 14 of 20CFG.NINJA

https://CFG.NINJA/

SOCIAL MEDIA CHECKS Eager Cat.

Social Media URL Result

Website https://www.eagercat.com Pass

Telegram https://t.me/Eager_Cat Pass

Twitter https://twitter.com/Eager_Cat Pass

Facebook https://www.facebook.com/EagerCat Pass

Reddit https://www.reddit.com/r/EagerCat/ Pass

Instagram https://www.instagram.com/_eagercat/ Pass

CoinGecko N/A N/A

Github N/A

CMC N/A N/A

Email Contact

Other https://www.youtube.com/@EagerCat, https://
www.tiktok.com/@eager_cat

Pass

From a security assessment standpoint, inspecting a project's social media presence is essential. It
enables the evaluation of the project's reputation, credibility, and trustworthiness within the community.
By analyzing the content shared, engagement levels, and the response to any security-related incidents,
one can assess the project's commitment to security practices and its ability to handle potential threats.

Social Media Information Notes:

Auditor Notes:

Project Owner Notes:

Page 15 of 20CFG.NINJA

https://CFG.NINJA/

ASSESSMENT RESULTS Eager Cat.

 Score Rsesults

Review Score

Overall Score 89/100

Auditor Score 87/100

Review by Section Score

Manual Scan Score 29

SWC Scan Score 37

Advance Check Score 23

Our security assessment or audit score system for the smart contract and project follows a comprehensive evaluation
process to ensure the highest level of security. The system assigns a score based on various security parameters and
benchmarks, with a passing score set at 80 out of a total attainable score of 100.The assessment process includes a
thorough review of the smart contracts codebase, architecture, and design principles. It examines potential
vulnerabilities, such as code bugs, logical flaws, and potential attack vectors. The evaluation also considers the
adherence to best practices and industry standards for secure coding. Additionally, the system assesses the projects
overall security measures, including infrastructure security, data protection, and access controls. It evaluates the
implementation of encryption, authentication mechanisms, and secure communication protocols. To achieve a passing
score, the smart contract and project must attain a minimum of 80 points out of the total attainable score of 100. This
ensures that the system has undergone a rigorous security assessment and meets the required standards for secure
operation.

Page 16 of 20CFG.NINJA

https://CFG.NINJA/

 Important Notes for KAT

Reentrancy: Verify non-reentrant pattern or use of
ReentrancyGuard.�

Visibility: Check all function visibilities for
appropriateness.�

Gas Usage: Review loops and recursive calls for potential
gas issues.�

Integer Arithmetic: Solidity 0.8 checks are in place;
SafeMath library usage is redundant.�

Upgradeability: No upgrade pattern; consider
implications for future changes.�

Owner Controls: Assess the risk of centralized owner
functions.�

Oracles: Not applicable; no external oracles used.�

Front-Running: Analyze functions like swapBack for
potential front-running.�

DoS: Check for failure points, such as reliance on
external contract calls.�

Events: Ensure all state-changing actions are

Page 17 of 20CFG.NINJA

https://CFG.NINJA/

accompanied by events.�

Error Handling: Confirm that all state-changing functions
use proper error messages.�

External Calls: Audit interactions with router and token
contracts for security.�

Access Control: Scrutinize onlyOwner and authorized
usage.�

Tokenomics: Evaluate fee structure, distribution, and
auto-liquidity for potential issues.�

Liquidity: Review auto-liquidity functions for potential
manipulation or errors.

Auditor Score =87
Audit Passed

Page 18 of 20CFG.NINJA

https://CFG.NINJA/

 Appendix

Finding Categories

Centralization / Privilege

Centralization / Privilege findings refer to either feature logic or implementation of
components that actagainst the nature of decentralization, such as explicit ownership or
specialized access roles incombination with a mechanism to relocate funds.

Gas Optimization

Gas Optimization findings do not affect the functionality of the code but generate
different, more optimalEVM opcodes resulting in a reduction on the total gas cost of a
transaction.

Logical Issue

Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect
notion on howblock.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-
only functionsbeing invoke-able by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain
edge cases that mayresult in a vulnerability.

Coding Style

Coding Style findings usually do not affect the generated byte-code but rather comment
on how to makethe codebase more legible and, as a result, easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet
contain different code,such as a constructor assignment imposing different require
statements on the input variables than a setterfunction.

Coding Best Practices

ERC 20 Conding Standards are a set of rules that each developer should follow to ensure
the code meet a set of creterias and is readable by all the developers.

Page 19 of 20CFG.NINJA

https://CFG.NINJA/

 Disclaimer

The purpose of this disclaimer is to outline the responsibilities and limitations of the security assessment and

smart contract audit conducted by Bladepool/CFG NINJA. By engaging our services, the project owner

acknowledges and agrees to the following terms:

1. Limitation of Liability: Bladepool/CFG NINJA shall not be held liable for any damages, losses, or expenses

incurred as a result of any contract malfunctions, vulnerabilities, or exploits discovered during the security

assessment and smart contract audit. The project owner assumes full responsibility for any consequences

arising from the use or implementation of the audited smart contract. 2. No Guarantee of Absolute Security:

While Bladepool/CFG NINJA employs industry-standard practices and methodologies to identify potential

security risks, it is important to note that no security assessment or smart contract audit can provide an

absolute guarantee of security. The project owner acknowledges that there may still be unknown

vulnerabilities or risks that are beyond the scope of our assessment. 3. Transfer of Responsibility: By

engaging our services, the project owner agrees to assume full responsibility for addressing and mitigating

any identified vulnerabilities or risks discovered during the security assessment and smart contract audit. It is

the project owner s sole responsibility to ensure the proper implementation of necessary security measures

and to address any identified issues promptly. 4. Compliance with Applicable Laws and Regulations: The

project owner acknowledges and agrees to comply with all applicable laws, regulations, and industry

standards related to the use and implementation of smart contracts. Bladepool/CFG NINJA shall not be

held responsible for any non-compliance by the project owner. 5. Third-Party Services: The security

assessment and smart contract audit conducted by Bladepool/CFG NINJA may involve the use of third-

party tools, services, or technologies. While we exercise due diligence in selecting and utilizing these

resources, we cannot be held liable for any issues or damages arising from the use of such third-party

services. 6. Confidentiality: Bladepool/CFG NINJA maintains strict confidentiality regarding all information

and data obtained during the security assessment and smart contract audit. However, we cannot guarantee

the security of data transmitted over the internet or through any other means. 7. Not a Financial Advice:

Bladepool/CFG NINJA please note that the information provided in the security assessment or audit

should not be considered as financial advice. It is always recommended to consult with a financial

professional or do thorough research before making any investment decisions.

By engaging our services, the project owner acknowledges and accepts these terms and releases

Bladepool/CFG NINJA from any liability, claims, or damages arising from the security assessment and smart

contract audit. It is recommended that the project owner consult legal counsel before entering into any

agreement or contract.

Page 20 of 20CFG.NINJA

https://CFG.NINJA/

